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Note 

Linear Stability of Finite Difference Equations 

for Three-Dimensional Flow Problems 

For stable simulations of fluid flows by explicit finite difference schemes, the 
time step must be smaller than a critical time step. This critical time step can be 
predicted in general for linearized equations only. The technique for evaluating 
this time step is described in many textbooks, e.g., [l, 21. Nevertheless, often the 
rigorous analysis has been replaced by some rule of thumb, especially for problems 
in more than one space dimension and for multi-time-level methods with both 
convective and diffusive transports. In these cases the critical time step can no 
longer be given in explicit algebraic form. Therefore, several authors have assumed 
that the critical time step is equal to the minimum value found in some special 
limiting cases, such as pure convection or pure diffusion. In this respect the DuFort- 
Frankel scheme [l, 21 seems to be advantageous, as it is unconditionally stable 
for pure diffusive transport. A combination of this scheme and the leapfrog 
scheme [I, 21 for the convective terms has been proposed, therefore, by many 
authors [2-61. The purpose of this note is to show that the critical time step is 
generally smaller than the minimum value found for pure convection and pure 
diffusion, especially for the combined leapfrog and DuFort-Frankel schemes. 

We consider the following linearized finite difference equations. 

Scheme I, leapfrog and DuFort-Frankel: 

Scheme II, leapfrog and time-lagged Euler: 

Scheme III, “upwind” dl@erences and Euler: 

where 

(1) 

(2) 

(3) 
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Here, K and D can be interpreted as the convective and diffusive terms, respec- 
tively; v is the dependent quantity, e.g., velocity. U, V, W are the convective 
velocities; Ax, dy, AZ are the space increments of the Cartesian finite difference 
grid; EL. is the viscosity; and At is the time step. The subscripts i, j, k label the grid 
points in space; the superscript indicates the time level. In order to allow the linear 
analysis U, V, W, p must be constants and any volume or pressure forces have been 
neglected. 

The general solution for these equations is 

where i = &i, 

Cj = cos(kj hi), (Ax,, dx, , dx3) = (Ax, dy, dz), 

Sj = sin(k, Ax& j= 1,2,3, 

and k, , k, , k, are any wavenumbers. The variation of the amplitude A;tl,k,Sr, vs 
time step II is governed by the amplification matrix G ([l, Section 51; for algebraic 
details, see [7]): 

G = Xa + ib) 
I 

c 
1 I 0’ 

Here, the real parameters a, b, c depend upon the scheme used. 
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Scheme I: 

c, 1 Az2 ’ 

vs ws - - Ay2 + dz3 I , 

y=2pAt I+l 
[ 

1 
Ax2 Ay2 + 422 * 1 

Scheme II: 

a = 0, 

b= -At[+$+%+T], 

c=1+4pAt %+“2’-‘++$. 
[ Ay2 I 

Scheme III: 

a = At [(Cl - 1) (+ + & + (C2 - 1) (q + +) 

+ cc3 - 1) (9 + &I, 

b= -At [ $$+?!%+!%], 
AY 

c = 0. 

The critical time step At follows from the Neumann criterion [l, 21, which 
requires for stability that neither of the two eigenvalues of G exceed the value one 
in magnitude. If we assume continuously distributed wavenumbers, then this 
criterion must be satisfied for all values of Cj and Sj with Cj2 + Sj2 = 1. 

This critical time step can be given algebraically for Scheme III: 

At < [$- + + + 9 + 2p (& + & + &)]-: (4) 

which can be deduced from the analysis of Krause [8], too. We see here that At 
must be smaller than those values found for either U = V = W = 0 or p = 0. 
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This result can be explained geometrically. For this purpose let us assume 
dx = dy = LIZ and U = V = W. Then in two space dimensions, the usual 
five-point stencil can be enclosed in a rectangle the sides of which are separated 
by the distance (2/q/z) dx instead of 2dx as in the one-dimensional case. Also, 
the two velocity components result in a total of 1/2 U. In three dimensions the 
seven-point stencil can be enclosed in an octahedron in which the smallest distance 
between two parallel planes is (2/1/T) dx and the resultant velocity is d/5 U. With 
these projected spacings and velocities we get the same results as (4) from the 
one-dimensional analysis. The viscous and convective terms add together as the 
total transport velocity is, e.g., u + &/Ax. 

For the other schemes the critical time step can be given in explicit form for 
these limiting cases only: 

(i) Zero convection (pure diffusion), U = Y = W = 0: 

Scheme I: At 3 0, no restriction; (5) 

SchemeII: At <At, = 

(ii) Zero diffusion (pure convection), p = 0: 

Schemes I and II: At < At, = [s + q + !--$$I-‘. (7) 

For the general case of combined diffusion and convection At must be determined 
numerically. Some results for a special example, 

U = 30, V = 3, w = 3, Ax = 0.125, Ay = 0.05, AZ = 0.05 (8) 
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FIG. 1. Example for the critical time step At for small (p < pc) and large (p > pc) values 
of the viscosity p for Scheme I (leapfrog and DuFort-Frankel). Ate is the limit for pure convection. 
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(in arbitrary units), are shown in Fig. 1 for Scheme I. We see that dt = dt, is not 
permitted unless the viscosity p is either zero or much larger than a viscosity pc 
characterizing the convective transport: 

( I Ul I VI IWI 1 - __ -- pc = Ax + dy + LIZ Ax2 + Lip )( A- + &)“. (9) 
In this example pC = 0.4 and we see that p must be larger than about 1250 pC 
in order to permit d t = d tC . For small viscosities the critical time step is less than 
50 % of dt, in this (and similar) examples. (Fromm [3] used a “security factor” 
0.5 in calculating d t from d tc .) 

This pathological behavior of the combined leapfrog and DuFoti-Frankel 
schemes does not exist in its one-dimensional form. Here, At = At, is permitted 
for any value p > 0 the viscosity [2, 31. It does exist already, however, in the 
two-dimensional case [7]. 

0 0.04 0.06 0.12 0.16 0.20 

P- 

FIG. 2. Example for the critical time step At vs viscosity p for Scheme II (leapfrog and lagged 
Euler). At, = limit for pure convection; At D = limit for pure diffusion; At, = lower boundary. 

For Scheme II, the critical time step d t is shown for this example in Fig. 2 as 
a function of the viscosity p. Again, we find that d t must be smaller than the 
minimum of LI tc and d tD for p > 0. However, for small values of the viscosity, 
At can be larger than that value permitted for Scheme I. Without proof we notice 
that 

At, = [J-f& + * + q + 4P (--& + + + -&)1-l (10) 

seems to be an acceptable lower boundary for the critical time step in this case. 
Scheme II together with Eq. (10) (reduced by a factor of 0.5 in order to account 

for nonlinearities) has been used successfully to simulate time-dependent and 
three-dimensional high Reynolds number channel flows [7]. 
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